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ABSTRACT

This project focuses on the following research question: how does

homogeneity and heterogeneity of users in a network community

help or hinder the spread of deepfake videos in an online social

network (OSN)? Moreover, how big of an attack would be needed

for the deepfakes to dupe most users? We will use three complex

modeling approaches to understand the structure and dynamics of

this system. We begin with a model of the system’s structure by

creating a Mixed Membership Stochastic Block Model (MMSBM)

voter model. We also model the dynamics of diverse misinformation

spread on the network using a contagion model. We then model the

interaction between attributes of the users and the system through

an agent-based model. Note the first two models we aim to make

the model as parameter independent as possible to use the model to

compare systems in the future with real-world data. We integrate an

agent-basedmodel of the system to look at the effects of introducing

various parameters in the system.

1 BACKGROUND

Deepfakes are synthetic images or videos in which the persona in

the video is generated synthetically. Creating a deepfake involves

training neural network architectures, such as generative adversar-

ial networks (GANs) or existing media, [29]. These neural networks

then generate new, synthetic content. Deepfakes are deceptive tools

that have gained attention in recent media for their use on celebrity

images and their ability to spread misinformation across online

social media platforms [26].

Deepfake videos are becoming increasingly more convincing. As

they begin to deceive viewers at greater rates, the harms of deepfake

videos will further emerge [10]. Deepfakes call into question several

ethical considerations: 1) the evidentiary power of video content in

legal frameworks [4, 7, 27]; 2) consent of the individual(s) featured

in deepfake videos [13]; 3) bias in deepfake detection software and

training data [14]; 4) worsening of disinformation and public trust

[4]. As deepfakes present harms and require ethical considerations,

it is further necessary to understand who gets duped by them and

how this impacts the system as a whole.

Deepfakes were easily detectable with the naked eye during the

early years of this trend due to their unnatural visual attributes [22].

However, research and technological advancement have allowed

adversaries to improve deepfakes, making them more challenging

to detect [4].

Biological signals include eye blinking, heartbeat, and head tilt-

ing, which are often strong tells that the persona featured in the

video is not real. For example, blinking behaviors in humans occur

unconsciously and repeatedly. Even though eye blinking is a normal

phenomenon, factors such as gender and time of day influence the

rate at which it occurs [17]. Humans are pretty good at detecting

anomalies in behavior like odd head tilting and off pattern blink-

ing and can, in many instances, detect the authenticity of a video

clip using the naked eye. Human aided interventions for deepfake

detection can help to assist automated techniques.

We are interested in whether the viewer’s implicit or explicit

biases help or hinder their ability to detect the authenticity of the

deepfake video. Moreover, if bias hinders their ability to detect

deepfake videos, does heterogeneity in an online social network

helps a community protect themselves from misinformation at a

group level?

There are several automated deepfake detection methods [11,

18, 30, 32]. However, as deepfakes become ubiquitous, it will be

important for the general audience or viewers to identify deepfakes

independently. Also, several issues currently hinder automated

methods: 1) they are computationally expensive; 2) there is quite

a lot of bias in deepfake detection software and training data -

credibility assessments, particularly in video content, have been

shown in recent work [14] to be heavily biased; 3) As we have seen
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with many cybersecurity issues, there is a cat and mouse evolution

that will leave gaps in detection methodology, humans can help

fill these gaps. However, we wonder to what extent human biases

impact the efficacy of detecting diverse misinformation. If human-

aided deepfake detection becomes a reliable strategy, we need to

understand the biases it imposes. We also acknowledge that insights

into human credibility assessments of deepfakes could help develop

more lightweight and less computationally expensive automated

techniques in the future.

2 COMMON PARAMETERS ACROSS MODELS

We present three models for this project. As a starting point we

developed some common parameters that we could use as foun-

dations for our systems. Here are the parameters that we will be

using for most models:

• Initial duped: 1

• N = 1,000

• Network: Mixed Membership Stochastic Block Model or

Stochastic Block Model

• Block Sizes = see sizes below for system type

• Block Probabilities = see probabilities below for system

type

• Pickiness: the bias against the other group. The pickier a

person is about the other group, the more myopic they are

to their in-group. The higher their bias, the easier it is for

them to get duped by a deepfake of the other group.

Category 1: everyone is equal

Sizes:

(
75 75 75 75

)
Probabilities:

©­­­«
0.2 0.001 0.001 0.001

0.001 0.2 0.001 0.001

0.001 0.001 0.2 0.001

0.001 0.001 0.001 0.2

ª®®®¬
Category 2: male has core-periphery

Sizes:

(
40 20 80 80 80]

)
Probabilities:

©­­­­­«
0.3 0.01 0.001 0.001 0.001

0.01 0.2 0.001 0.001 0.001

0.001 0.001 0.2 0.001 0.001

0.001 0.001 0.001 0.2 0.001

0.001 0.001 0.001 0.001 0.2

ª®®®®®¬
Category 3: white mainstream

Sizes:

(
120 120 30 30

)
Probabilities:

©­­­«
0.3 0.05 0.001 0.001

0.05 0.3 0.001 0.001

0.001 0.001 0.2 0.001

0.001 0.001 0.001 0.2

ª®®®¬
3 THE PROBLEM

As we mentioned above, this project focuses on the following re-

search question: how does homogeneity and heterogeneity of users

in a network community help or hinder the spread of deepfake

videos in an online social network (OSN)? Moreover, how big of an

attack would be needed for the deepfakes to dupe most users?

To address this problem, we will simulate the introduction of

a deepfake adversarial campaign on an online social network and

observe the behavior of users as they interact with the videos. In

our model, users have a variety of possible attributes that represent

a range of demographic diversity and intersectionality. The range

and number of attribute types will vary depending on the model

type, real-world system, and population of interest. Users will then

have probabilities of connecting to other users, being duped by the

videos, being informed and not getting duped for the videos, or

being susceptible and not seeing the videos.

In our models, we are intentionally trying to understand the

broader structure of the system, the dynamics of the system, and the

parameters independently so that we can more broadly understand

the mechanism and more flexible compare systems from various

online social networks using real-world data.

4 NETWORK MODELS OF DIVERSE

MISINFORMATION

Our first two models will be structured using a Stochastic Block

Model (SBM) and a Mixed Membership Stochastic Block Model

(MMSBM) and will look at the spreading dynamics of diverse mis-

information via a voter model and a contagion model. We initiate

three distinct networks in each model by creating an SBM and

MMSBM with the above common parameters.

4.1 Background: Stochastic Block Models and

Mixed-Membership Stochastic Block Models

Edge probability depends on groupmemberships instead of connect-

ing node pairs with equal probabilities. Stochastic BlockModel:A

stochastic block model (SBM) is a generative model that generalizes

the Erdos-Renyi model to have groups. SBM is a random Poisson

graph model in that node degrees within any group are distributed

according to a Poisson distribution[23]. The SBM is widely used in

complex systems because of its ability to generate different types of

network structures, e.g., core-periphery, community structure, hub-

and-spoke, etc. Not only is the SBM flexible, but it is also extensible,

as we can see below with the Mixed Membership SBM.

We take advantage of the SBM’s flexibility by using three struc-

tures as our initial conditions. We refer to these three conditions

as (1) ‘everyone is equal, (2) ‘male has core-periphery,‘ (3) ‘white

mainstream‘ (see Figure 2 for results of the SBM). Note that we

have four groups or blocks for each condition to potentially repre-

sent different features of a population, here gender and ethnicity.

We assume binary gender (male and female) and ethnicity (white

and people of color) for simplicity. We hope to include non-binary

gender in future work once we have empirical data with gender

identity self-reporting. Conditions are created using a matrix of

probabilities that specify the degree to which nodes are connected

within-group (probabilities on the diagonal) and across groups. In

the first condition, we have equal probabilities both within-group

(𝑝𝑟𝑟 = 0.2) and across groups (𝑝𝑟𝑠 = 0.001). In the second condition,

we add a subgroup in the periphery of the white male population.

We might hypothesize that this particular subgroup has different

biases when consuming deep than the main population. The third

condition is analogous to the second one but seeks to represent

a minority of people of color against the mainstream of a white

population. We created our SBM using NetworkX SBM module.

Mixed Membership Stochastic Block Model: A Mixed Mem-

bership Stochastic Block Model (MMSBM)[3] is a Bayesian method

of community detection which segments communities into blocks
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(a) Everyone

equal

(b) Male Core-

Periphery

(c) White Main-

stream

Figure 2: from left to right: (a.) Everyone is Equal, (b.) male

has core periphery, (c.) white mainstream Stochastic Block

Model (N=1000)

but allows community members to mix with other communities.

Assumptions in a MMSBM include a list of probabilities that deter-

mine likelihoods of communities interacting. Unlike the Stochastic

Block Model explained above a MMSBM allows nodes to belong to

multiple communities, can have multiple strengths of membership,

adding an extra layer of parameters to the network. MMSBM can

either be used to be predictive and identify unknown communities

through their patterns of interaction or interpretive where they are

used to help understand known communities and how they interact

and overlap with each other.

In our project, We use the MMSBM because the system we are

interested in (this is something we will consider integrating in

future work) real world social networks which are a heterogeneous

and are systems where there are overlapping communities. We

created our MMSBM in the following manner:

• 𝜎 i = the label of node i ∈ 0,1 (this vector represents a node’s

presenting identity and an interest in other identities given

their identity)

• i,j = are node IDs ∈ 0,1,2...N-1 (these scalar are the number

of sets of blocks in the group, white people, people of color,

men, women etc.)

• probabilities (p) = [p1, p2, p3, p4] (this matrix represents

the probabilities of blocks interacting)

• Mixed Membership Stochastic Block Model Pseudo Code:

• for i in range(N):

• for j in range(i + 1, N)

• bi = random choice (𝜎 :) (e.g. [[0,0], [0,1],[1,0],[1,1]])

• if Random choice < p[𝜎1, 𝜎2]

• A[i,j]=1→ add edge (i,j)

In Figure 3we show preliminary results of theMMSBM for online

social media communities that allow for less and more coupling

between blocks. Here you see in themost left sub-figure, all coupling

must go through the bridge nodes, and a you can see in the furthest

sub-figure on the right, coupling can flow from any of the blocks.

4.2 Contagion Model

As in the SIR model, we assume that nodes in our contagion model

can be in one of three states; they can be informed, duped, or re-

covered. We assume that the contagion unfolds in discrete steps

where each step represents the possibility that a node 𝑖 "infects"

neighbor 𝑗 by sharing a deepfake video. As in traditional contagion

models, there is a probability that the transmission will succeed,

(a) Everyone

equal

(b) Male Core-

Periphery

(c) White Main-

stream

Figure 3: from left to right: less coupling to more coupling

in a Mixed Membership Stochastic Block Model (MMSBM)

(N=1,000). (a.) Everyone is Equal, (b.) male has core periphery,

(c.) white mainstream Mixed Membership Stochastic Block

Model

and a duped user will recover. Our model loops over the nodes se-

quentially for a given number of steps or until the model converges

to equilibrium.

Our model differs from the traditional SIR model in two impor-

tant ways. First, the content propagates on the network concerns

either its in-group or the other group. We represent the (deepfake)

content in the form of a node attribute as if nodes create a memory

of the deepfake they watched and want to share. The transmission

probability is then represented by a bias, which can take different

values depending on the content of the deepfake being shared. The

assumption here is that people will be more skeptical about deep-

fake from the other groups than their own group. Although we

assume an ethnicity bias, our model could be easily extended to

other biases such as political ideology or socioeconomic status. We

also assume that how uncritical someone is of its own group, or

blindness, correspond to blindness = 1 − skepticism. The second

key difference is that we assume duped individuals can recover with

a certain probability only if they have a certain fraction of their

neighborhood that is informed. The assumption is that having an

informed neighborhood might educate duped individuals, thereby

helping them recover from being duped by a deepfake video. The

form of this recovery mechanism is: 𝛼0+𝛼 ( #I neigh𝑘
), where 𝛼0 is the

probability of spontaneous recovery, and 𝛼 is the social influence

weighted by the fraction of informed people around you. In our

results, we look at both how social influence influence population

recovery with and without spontaneous recovery.

The key parameters of our contagion models are the following:

• Pickiness: the bias against the other group. The pickier a

person is about the other group, the more myopic they are

to their in-group. The higher their bias, the easier it is for

them to get duped by a deepfake of the other group.

• fraction informed: the fraction of neighbors needed to have

a chance to recover.

• 𝛼0: the probability of spontaneous recovery.

• 𝛼 : the probability of recovery by social influence.

Combined with different initial network structures, these param-

eters allow us to study the relationship between group bias and

recovery in the context of a deepfake video outbreak. We now turn

to the initial results of the contagion model.
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Figure 4: Initial network for the results below. In red we have

the initial duped population, in blue the informed popula-

tion.

In Figure 4, we can see the initial network we use for the sub-

sequent results. It is an “everyone is equal” structure, in which we

have rewired within groups so that the degrees are distributed ac-

cording to a power law. As a first step, we can look at the long-term

behaviors of the different populations:

Figure 5: This figure shows the proportions of duped, in-

formed and recovered users throughout the simulation. Pa-

rameter sweep of the contagion model. On the x-axis, we

have Pickiness at [0.3, 0.5, 0.7]. On the y-axis, we have frac-

tion of informed at [0.3, 0.5, 0.7]

Figure 6: Fixing the bias at .7 and alpha 0.2, we can examine

the necessary fraction of informed users that is necessary for

the majority to recover. We can see that if users require more

than 1/3 of their surroundings to be informed to recover, not

everyone recovers.

Instead of going into the details of all the different panes, we

picked one example that we think is promising for further inves-

tigation. In Figure 5, we can see that our parameters have strong

effects on the ultimate proportion of users we have in each state.

Starting from the first row and moving from left to right, we can see

that requiring a larger fraction of informed neighbors to recover

seems to bring closer together the population, with informed people

taking over recovered people (be careful, you have to be wary of

the y-axis because it varies freely from one facet to another).

In Figure 6, we see a threshold effect from which the majority

seems to be able to recover from the deepfake epidemic. We note

that if users need more than 1/3 of neighbors to recover, the pop-

ulation remains primarily duped by deepfakes. Taking this result

at face value, we might hypothesize that one way to counteract

a deepfake epidemic is to ensure that informed people are evenly

distributed on the network and not concentrated in any particular

group.

4.3 Voter Model

The Voter Model is a simple mathematical model of interacting

agents in a system formulated by Richard A. Holley, and Thomas M.

Liggett [16]. A voter is one node in our network, and edges between

networks assume some interaction between connected nodes. In

the voter model, we pick uniformly random nodes in the system,

whichwe call listeners, which speakers’ opinions can influence their

network neighborhood. In our simple model, voters can either be

in the state blue or red where these colored states represent duped

or informed. Our initial network is based on a Mixed-Membership

Stochastic Block Model (MMSBM)[3] with specific probabilities

of blocks interacting with each other. At every time-step (t), we

pick a random node, and they will adopt the state of neighbor at

some probability p. Our model runs until the system reaches the

maximum time steps or consensus.

Ideas on how we can extend the model:
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• In future work, we would be interested in expanding the

model, inspired by Sid Redner’s Reality Inspired Voter Model
Overview [25], we could implement levels of confidence in

voter’s opinions.

• We are also working on integrating a probability into the

model that dictates the relationship between the individ-

ual’s bias levels and how likely they are to be initially duped.

• We see in the MMSBM that the bridge nodes between com-

munities seem like an ideal population to look at in more

detail to answer our question and compare with more pe-

ripheral nodes. One question we would like to investigate

further is the susceptibility of bridge nodes in the MMSBM

because they are connected to opinions of many more

blocks, are they more or less susceptible, and perhaps do

they suffer a burden of being gatekeepers [8].

Figure 7: Schematic for voter model

4.4 Voter Model on a Mixed-Membership

Stochastic Block Model Initial Results

In thismodel, we look at the relative spread of duping in the network

based on the structure of the network communities’ probabilities of

interacting with other communities in an MMSBM. The MMSBMs

allows for less and more coupling between blocks. Here in 8 you see

in the most left MMSBM sub-figure, all coupling must go through

the bridge nodes, as seen in the furthest MMSBM sub-figure on

the top right, the coupling can flow from any of the blocks. Here

we vary heterogeneous and homogeneous mixing and compare

the speed at which duping spreads through the system. As seen in

Figure 8 the network with the most coupling reaches consensus

easier because there is more access to connect to the bridge nodes

from other blocks and communicate the vote throughout the sys-

tem. We run this voter model to see the impact of simple spread

dynamics on an MMSBM and to view the role of bridge nodes in

this process. from left to right: less coupling to more coupling in a

Mixed Membership Stochastic Block Model (MMSBM) (N=1,000).

In Figure 8 from second row top to bottom Voter Model results in

the probability of being duped=0.3,0.5,0.7 averaged over ten runs

and 1e6 iterations show who wins and reaches near consensus in

the system. Blue=duped and red=informed.

Degree Distribution for the three voter model MMSBMs:

The average degree is used to measure the connectedness of

a network. Voter Model Network on 1: for the low coupling

network the average degree for this social network is 7.568, which is

the total of all the node’s degrees divided by the number of nodes in

the network. Compared to the other hypothetical social networks,

this network has a relatively high level of connectivity.

The average degree is used to measure the connectedness of a

network. Voter Model Network on 2: for the medium allow-

able coupling network the average degree for this social network

is 4.577, which is the total of all the node’s degrees divided by

the number of nodes in the network. Compared to the other hy-

pothetical social networks, this network has the lowest level of

connectivity.

The average degree is used to measure the connectedness of a

network. Voter Model Network on 3: for the most coupling

network, the average degree for this social network is 5.310, which

is the total of all the node’s degrees divided by the number of nodes

in the network. Compared to the other hypothetical social networks,

this network has the median level of connectivity.

Figure 8: from left to right: less coupling to more coupling in

a Mixed Membership Stochastic Block Model (MMSBM) (left

column a.) Everyone is Equal, (middle column b.) male has

core periphery, (right column c.) whitemainstream (N=1,000).

From second row top to bottom Voter Model results proba-

bility of being duped=0.3,0.5,0.7 averaged over 10 runs and

1e6 iterations shows who wins and reaches near consensus

in the system. Blue=duped and red=informed.

5 AGENT-BASED MODEL OF DIVERSE

MISINFORMATION

5.1 Methodology

For our agent-based model (ABM), we used Mesa and NetworkX to

adapt an existing SIR ABM to track the spread of DeepFake videos

as a virus spreading through a population. Each simulation of our
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model (Figure reffig:ABMSchematic) follows a single DeepFake

video as it spreads through a social network. We chose a network

as our environment since this is a more accurate representation of

the arrangement of the relationships in an online social framework

(e.g., Twitter, Facebook) than structures such as the square grid of

a cellular automata (CA) model, and to build on our work from the

two network models described previously in this report. The agents

are the people in the social network. In this ABM, the structure of

the network is static. However, the agents move around the network

to simulate the fluctuation of real-life online social platforms, e.g.,

Facebook users friending new people and unfriending others. Since

we are primarily interested in whether the interaction between race

and gender of the deepfake viewer and those of the person portrayed

in the video affects the spread of the video, the agents have a race

and gender attribute. For simplicity’s sake, we have reduced the

race categories to white and non-white and the genders to male,

female, and non-binary. To reduce the number of agent types in

the model (since each simulation tracks a single video), we chose

to include the race and gender of the persona in the deepfake video

as attributes of the viewer (video_race and video_gender). There

are four states of the agents, which change as they interact with

neighbors: Naïve agents have not watched the video, duped agents

believe the DeepFake is true and may spread it to their neighbors,

neutral agents are undecided about the video and neither spread

nor flag it, and informed agents know the video is fake, do not

spread it, and may flag it.

The model is initialized by setting a network structure and as-

signing all agents a Naïve status, then randomly changing their

status to duped based on a tunable probability initialDupedProb.

These agents represent the first people in a social group to watch a

DeepFake video or perhaps the creators of said video. In each step,

the model iterates over all the agents in the model. First, all the

agents move to an adjacent node. Next, any neighbor of a duped

agent who has watched a video (decided in the previous iteration)

decides regarding the video’s veracity. Agents may watch the video

an unlimited number of times and change their opinion unlim-

ited times (Figure 9 A-B). We have added tunable parameters that

can be used to adjust the probability of changing from a duped

or informed state, p_StayDuped and p_StayInformed, respectively.

Viewers believe a DeepFake video with probability finalPDuped,

which is calculated by multiplying a tunable baseline pDuped by

tunable modifiers that are applied when the viewer’s gender or race

matches that of the video’s character (Figure 9 C). Duped agents

attempt to spread the video by posting it on their social media page,

where it is watched by any of their friends with probability pWatch.

These agents will then choose their opinion state in the next step. If

the video does not dupe the viewer, they will either become neutral

with probability pNeutral, or informed with probability 1-pNeutral.

Neutral agents do not engage any further with the video. Informed

agents flag the video with probability pFlag. When the video meets

a tunable threshold of flags, the video is taken offline, and the video

stops spreading (Figure 9 A-B).

5.2 Results

We ran many simulations with our agent-based model using dif-

ferent model interactions, initial conditions/initial network, and

Figure 9: Diverse misinformation Agent Based Model

Schematic

different parameters. Shown in this report are 4 of our simulation

runs, where only two model parameters were varied in order to

see the effect these two parameters had on the model: racePropor-

tions, the proportions of people of each race among the agents,

and videoGender, the presenting gender of the individual in the

deepfake video that was spreading. Each simulation has seven dif-

ferent output graphs, where the graphs include a total graph that

displays the states of all agents and then six different breakdowns

of subsections of the agent’s population by gender and race. This

allows us to pinpoint the effects of changing parameters in the

model concerning gender and race.

We observed several general trends in our graphs that will be

recorded here before analyzing the specific figures we have chosen

to include. For example, varying the probability of becoming duped

by a video after watching that video changes the states of nodes

causing many more to become duped than informed or vice versa.

The level of neutral increases or decreases proportionally with

informed. Agents who are naïve to a video decrease at the same

rate (this is related to pWatch), except in the case where the flags

threshold is reached, and then spread stops because the video is

removed. The curves are flattened as the flags threshold is increased.

The spread of duped videos is faster and can dupemore people in the

final step before reaching the flag threshold when the probability
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Figure 10: ABM Simulation with raceProportions = (0.8, 0.2),

genderProportions = (.45, .4, .1), videoGender = MALE, video-

Race = WHITE, genderMatchMult=.1, raceMatchMult=0.1

Figure 11: ABM Simulation with raceProportions = (0.5, 0.5),

genderProportions = (.45, .4, .1), videoGender = MALE, video-

Race = WHITE, genderMatchMult=.1, raceMatchMult=0.1

of watching the video increases. Because varying these parameters

caused predictable outcomes in our simulations, we chose not to

go into more detail about them here. For the following graphs, our

initial parameters that remained unchanged were as follows:

Figure 12: initial parameters that remained unchanged

Figures 10 - 14 show Deepfake spread simulations using different

sets of parameters. The top-left graph shows the total spread among

the population. The six graphs in the bottom two rows show the

opinion states of the subpopulations grouped by gender and race.

The total number of people is kept at 1,200. For Figure 10, it can

be seen that the number of informed users always stays high as

compared to "NAIVE”, ”DUPED “,”NEUTRAL“ and the persons who

flag the videos. The six graphs below show the distribution of the

states among the white or non-white people. Here it can be seen

that keeping the race proportion [0.8, 0.2], video gender as "MALE"

and video race as "WHITE, the white male, female, and non-binary

get more informed. Also, the number of non-white males seems

to be more informed about the fake videos than the non-white

females, which seem more duped. Similarly, in 11, keeping the race

proportion [0.5,0.5], shows us that the ratio of getting informed and

duped are almost the same as the previous graph because the gender

and race of the video are still the same. In figure 13 , we changed

the race proportion from [0.5,0.5] to [0.2,0.8], which means there

are 20 percent white people and 80 percent of non-white people.

In this case, we can see the rise in the number of informed non-

white males, but non-white-females still have high numbers of

duped. In the last figure 14, The race proportion is changed again

to 0.8 white and 0.2 non-white people, but here we also changed

the gender of the video to non-binary. These changes resulted in

the rise in the number of duped non-white males compared to the

rest of the population. In all these scenarios, the two parameters,

i.e., "genderMatchMult” and "raceMatcMult," are kept the same at

0.1. This parameter is used to create biases towards the states. For

example, if the gender of the video is the same as the person, we

multiply it with the person’s probability of getting duped, pDuped.

Similarly, if the deepfake video’s race is the same as the race, the

raceMatchMult is multiplied.

Figure 13: ABM Simulation with raceProportions = (0.2, 0.8),

genderProportions = (.45, .4, .1), videoGender = MALE, video-

Race = WHITE, genderMatchMult=.1, raceMatchMult=0.1

Notably, varying genderProportion has the same effect on our

simulation as varying raceProportion, as these two parameters are
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Figure 14: ABM Simulation with raceProportions = (0.8,

0.2), genderProportions = (.45, .4, .1), videoGender = NON-

BINARY, videoRace = WHITE, genderMatchMult=.1, race-

MatchMult=0.1

set up in the same way in our code; the levels increase or decrease

proportionally to which videos they match.

6 DISCUSSION

The three models that we explored in this project helped us better

understand different parts of our system’s structure and dynamics.

They also help describe and visualize the system in different ways;

for example, the ABM and Voter model is easy to understand for

a general audience and may be helpful in science communication

about deepfake spreading. Overall, we found the contagion model

to be the most illuminating on the system’s dynamics. However,

in future work, we would like to explore additional mathematical

models that can help inform the contagion model. We currently do

not have empirical data to inform these models, and we initially

created the models to be data-independent. However, we would like

to integrate real-world data into our models and possibly compare

results across social media platforms with different community

structures in future work. Below we outline a summary of each of

the model’s strengths, weaknesses, and insights:

Pros and cons of the contagion model and what it told us

about the system:

The contagion model allows us to study the impact of group and

recovery biases on the propagation and convergence of deepfakes

in a population. The bias mechanism we implemented revealed a

threshold effect in the propagation of deepfakes eg. if you need

too many informed people around you to recover, not everyone is

recovring. This result holds when a given population has relatively

strong biases against the other group. (𝛽 = pickiness = .7). The

network component of our social contagion model is also inter-

esting because we can examine the impact of network structure

on the propagation of deepfakes. In our case, we note that when a

population does not recover completely, it is because of a clustering

effect among the populations. That being said, one of the downsides

of the contagion model is that the analogy breaks down when it

comes to the process of transmission, that is, people do not spread

deepfakes on contact. For example, someone in Malaysia might

assign someone in Quebec if they both share the same interest.

Deepfakes are often shared via social media, which have their own

peculiarities that we do not discuss here. Also, the spreading pro-

cess does not reflect the varieties of deepfakes present in reality.

Often when we talk about diseases we are talking about a few types

of pathogens or viruses. In our case, deepfakes are cultural artifacts,

constantly copied and reinvented at a phenomenal rate.

Pros and cons of the MMSBM Voter model and what it told

us about the system

In the voter model, we look at the relative spread of duping in

the network based on the structure of the network communities’

probabilities of interacting with other communities in an MMSBM.

The MMSBMs allows for less and more coupling between blocks.

We saw from these results that bridge nodes in the MMSBM play a

noticeable role in spreading diverse misinformation. In this model,

we varied heterogeneous and homogeneous mixing and compared

the speed at which duping spreads through the system. As seen in

Figure 8 the network with the most coupling reaches consensus

faster because there is more access to connect to the bridge nodes

from other blocks and communicate the vote throughout the system.

We ran this voter model to see the impact of simple spread dynamics

on an MMSBM and to view the role of bridge nodes in this process.

For the initial process of examining the speed of attacks, the voter

model seems insightful. However, this is a simple model that does

not show us much about the overall dynamics of our communities.

Pros and cons of the ABMmodel and what it told us about

the system

We noticed several interesting features regarding DeepFake

video spreading from the simulations conducted with the ABM.

First, the system reaches a dynamic equilibrium quickly, by the

20th step for all the subpopulations the simulations discussed in

this report. The system’s dynamics can be accelerated or deceler-

ated by changing the probability of neighbors watching the video

(p_watch) and stopped very quickly by setting a low flag threshold

and a very high probability of becoming informed and flagging the

video. Next, the first three simulations represent a small parameter

sweep of the race proportions of the agents in the model (Figures

10 - 14). The small effect of the system’s race proportions and the

gender of the video on the final number of duped, neutral, and

informed populations suggests that the outcome is more dependent

on the initial pDuped parameter and its modifiers (p/StayDuped,

genderMatchMult, and raceMatchMult). Because the model itself

has many different parameters to start, changing any given param-

eter will not, on average, make a large change in the model output

(unless it is a key parameter such as pDuped). The key insight of

the model is that though the final sizes of the duped, neutral, and

informed populations for the overall system may look similar for

different simulations, the final results may look vastly different

when grouping agents by race and gender. We found such differ-

ences both when comparing subgroups in the same simulation

and the same subgroup across simulations differing by a single

parameter. For example, the nonwhite male and female popula-

tions in Figure 13 have very different outcomes due to the effect

of the raceMatchMult modifier on the probability of being duped.
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Additionally, the nonwhite male population has vastly different

opinion states for simulations shown in 10 and 14 where the only

difference is the gender of the video. The differences here are due

to the genderMatchMult modifier.

Our model’s most prominent and polarizing aspect is its inherent

flexibility in construction. Flexibility allows for minor adjustments

and tuning of the model and incorporates an unlimited number

of model parameters or networks that the simulation is run on.

This is an excellent boon for attempting to model an issue with

many confounding variables that are relatively unexplored in their

impact. However, it is also a bane in that we do not currently have

real-world data to back up the tuning of our model. For example,

we do not know that the effect of a match in gender between a

viewer and the perceived gender of the deepfake persona will result

in the probability of the viewer becoming duped decreasing by 90%.

This uncertainty makes taking away actionable conclusions from

our model difficult and leads to sparser conclusions.
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7 APPENDICES

APPENDIX I: CODES

• code for SBM basic Contagion Model

• code for SBM Fancy Contagion Model

• code for MMSBM Fancy Contagion Model

• code for MMSBM Voter Model

• code for Agent Based Model

8 APPENDIX II: TEAM ROLES & TIMELINE

8.1 Team Roles

• Project management: Juniper

• Literature review:

– Background on deepfakes on online social networks:

Juniper, Jonathan, Gabriela, Ijaz, Alex

– Background on networkmodelmethodology and spread-

ing: Juniper and Jonathan

– Background on agent based model methodology: Alex,

Ijaz, Gabriela

• Models:

– Network Model: Juniper and Jonathan

– Agent Based Model: Alex, Gabriela, Ijaz

• Visualization of figures and results: Ijaz, Alex, Gabriela

• Write final report and prepare slides: All

• Record final presentation: All

https://arxiv.org/abs/2008.11363
https://microsoft.github.io/graspologic/tutorials/simulations/mmsbm.html
https://doi.org/10.1109/ACCESS.2020.2988660
https://doi.org/10.1109/ACCESS.2020.2988660
https://doi.org/10.1109/ACCESS.2020.2988660
https://doi.org/10.1109/ACCESS.2020.2988660
https://doi.org/10.1007/BF01040624
https://doi.org/10.1109/JSTSP.2020.3002101
https://doi.org/10.1109/JSTSP.2020.3002101
https://colab.research.google.com/drive/1qJxm2j_jSYrrensG0WK0XNlAEHjPBwSY?usp=sharing
 https://colab.research.google.com/drive/176mOi0dM0hK4qpfespP-BuIqW7WLcx0t?usp=sharing
https://colab.research.google.com/drive/11rvnUF2l19j0Soz45I87v7cFpQ3-YRum?usp=sharing
https://colab.research.google.com/drive/10UJ4S56S4H6fuwb0_jMFOfcnjiJ1EPS6?usp=sharing
https://colab.research.google.com/drive/1oh44RW_dd7wpAPrSuhrwiQTp4mdbuL45?usp=sharing
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8.2 Timeline of due dates

Team meeting times: weekly Sunday from 4-5pm on Teams

• November 8 - Complete Project proposal: All

• November 10 - Submit Proposal: Juniper will submit on

blackboard

• November 17 - Complete Literature Review: All

• November 21 - Complete models: All

• November 24 - complete figures: All

• November 24 - Complete methodology and results section:

All

• November 28 - Complete discussion section and abstract:

Juniper

• December 1 - Submit first draft of written report: Juniper

will submit on blackboard

• December 4 - Complete slides - All

• December 5 - Complete presentation: All - will record via

zoom

• December 8 - Submit final presentation: Juniper will sub-

mit on blackboard

• December 16 - Submit final written report: Juniper will

submit on blackboard

9 APPENDIX III: PROJECT PROPOSAL

Prepare a proposal and upload it to the Blackboard website by No-

vember 10th at midnight. The proposal should be at least half a page,

describing the system or research question your team wishes to

tackle. You should discuss what modeling approaches you are con-

sidering, and howmuch you want to achieve in your project. Finally,

doing a brief literature search on the topic is highly recommended

to find guidance in published work to inspire you

System: our team is working to model spread of deepfake videos

on online social networks (e.g. Facebook).

Research Question: how does homogeneity and heterogeneity

of users in a network community help or hinder the spread of

deepfake videos in an online social network? How big of an attack

would you need for the deepfakes to dupe a majority of users?

ModelingApproach 1NetworkModel:Our project will model

the spread of deepfake videos on a social network, the model will

be inspired by an SIR model where users groups will be exposed to

deepfake videos and can either take the state of being susceptible

(cautious), Infected (duped), or Recovered (informed). Our network

structure will be determined by a mixed membership stochastic

block model (MMSBM) [9] which will allow probabilities of links

between nodes to depend on node attributes. We assume that net-

work neighbors share properties of homophily [20] and will have a

tendency to connect to like attributes. The probability of connecting

to like attributes will be tunable.

For our network model, we will create 5 distinct user groups on

the social network (e.g. by gender (identifies as male, female, or

non-binary) and BIPOC status (identifies as a person of color or not

a person of color). We will also create distinct types of deepfake

persona groups based on perceived demographics of the personas

in the deepfake videos (e.g. by gender (user perceived them as male,

female, or non-binary) and BIPOC status (user perceived them

as a person of color or not a person of color). We will set initial

conditions of the populations of users, populations of deepfakes,

and deepfake birth (B) and deepfake death (D) rate for deepfake

videos entering the and exiting the system.

Once the SBM initial conditions has been established we will

release the deepfakes onto the system and observe the spreading

dynamics on the network. We will assign tunable probabilities for

the likelihood of users seeing deepfake videos (S). Based on which

deepfake videos the users see, they will have a likelihood of ending

up in 1 of 3 states, namely, cautious, duped, or informed. Once all

deepfake videos have been seen we will observe the percolation of

the videos in the system and measure which user groups end up in

which state.

If we want to take the model to the next iteration, we could then

update the system again by setting probabilities of users in states

that are duped sharing the deepfake video at some probability and

informed users flagging (killing) a deepfake video at some proba-

bility. We could then observe how long it takes for the deepfake

videos to either die out or take over.

Modeling Approach 2 Agent Based Model: For our agent

model we will be model a similar system and dynamic as the net-

work model approach but add additional parameters. We will es-

sentially replicate the network model as an ABM model. We will

initially look at how the system looks with parameters zeroed

out. Depending on time/how complicated coding is we can intro-

duce/start varying parameters and see how/whether they change

things. Such as rules for updating states of neighborhoods based

on inter-dependencies between user groups using a majority rules

type model approach [21].

What we want to achieve in our project: We hope to finish a

basic model of the spreading dynamics of deepfake videos on an

online social network. Later we would like to inform the model with

various real world network data in order tomeasure the relationship

between the structure (heterogeneity or homogeneity) of the system

and the dynamics on the system (misinformation attack size and

characteristics). We have decided to leave the model flexible for

now so that we can tune parameters for various real world online

social network systems later using empirical data.

Literature Search:We have run an initial literature search on

deepfake videos (and generally some other misinformation spread-

ing) on online social networks [2, 5, 11, 12, 18, 24, 30, 32], credibility

and deception in videos and memory [14, 19, 29], and the ethical

harms of deepfake videos [4, 6, 7, 10, 13].

For our model literature review will be conducted on stochastic

block models [15], agent based models of spreading [1, 28, 31].
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